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Improving Convergence Rate in the Method of 
Successive Approximations* 

By James A. Pennline 

Abstact. An application of the method of successive approximations for obtaining the 
solution of a nonlinear integral equation arising from a two-point boundary value problem is 
illustrated. In particular, we show sufficient conditions under which the convergence rate of 
the sequence can be improved. 

1. Introduction. Consider two-point boundary value problems of the form 

(la) u" f(x, u), 0 < x < 19 

(lb) u(0) = u(l) = 0. 

One method for solving such problems is to convert (1) to an integral equation 
which under sufficient conditions can be solved by successive approximations. This 
method is discussed by Keller [3]. His approach is to first subtract k2u from both 
sides of (la) and consider the equivalent problem 

(2) u" - k2u = f(x, u) - k2u, u(0) = u(1) = 0. 

Then, for k # 0, (2) can be converted to an integral equation by the Green's 
function procedure for the operator (d 2/dx2 - k2), i.e., 

(3a) u(x) = f gk(x, (){k2u(() - f(l, u(t))} d , 

where 

(3b) g(X ) 1 f sinh kx sinh 
k(1 ) 0 < x < 

k sinh k sinh k(l -x) sinh k(, t < x < 1. 

The advantage gained in considering the equivalent problem (2) in place of (1) is 

seen in the following result given by Keller [3]. 

THEOREM (KELLER). Let af/au be continuous for all x E [0, 1] and all u. If there 

exists an N > 0 such that 0 < af(x, u)/au < N for all x E [0, 1] and all u, then 
there exists a unique solution of (1). For any k such that k2 > N, the solution is given 
by the limit of the convergent sequence of functions 

(4a) u?(x) = 0, 

(4b) um+l(x) = gk(x ()[k2um( )-f(l, um(())] d$, m = 0, 1, 2. 
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Proof. Let 

(5) em+ l(X) = Um+l(X) - um(X), 

and 

(6) -I em+ lll = max lem+l(x), m = 0, 1. 

Then, for m = 1, 2, ... . 

(7) em+ (x) = 9gk(X, )[k2- _i(e, Um(() -_ (()em(q))jem(() dt, 

where the mean-value theorem has been applied and 0 < 0(t) < 1. Note that 

gk(x, () > 0, and 0 < af/au < N is assumed for all u. Therefore, if k2 > N, the 
bracketed term in the integrand of (7) satisfies 0 < (k2 - af/au) < k2. Hence, 

1eM + (x)j < k2| 
I 

gk(xg () dt . Il eml 
(8) 0 

< juk1lem119 m = 1, 29 .... 

where 

(9) tLk = (i - cosh(k/2)) 

Since Eq. (8) holds for all x, we have 

(10) IIem+ '11i < uk1lem11| m = 1, 2. .... 

Observe that tuk < 1, and I I e m + I I I < Ikm e1'l 1. Thus { u m } is a Cauchy sequence in 
the space of continuous functions on [0, 1] with the norm defined by (6). Therefore, 
a continuous limit u exists, to which {um(x)} converges uniformly. Since the order 
of the limit operation and the integration can be interchanged, the limit function 
satisfies the integral equation (3). To establish uniqueness, let u(x) and v(x) be two 
solutions to (1). Then they both satisfy (3) for the same value of k2 > N. By the 
same analysis that leads to (10), Ilu - vll < tLkllu - vll. Since PUk < 1, we must 
have iiu - vll = 0 or u = v. 

The existence portion of Keller's proof is constructive in nature and suggests a 
procedure for computing the solution numerically. However, as Keller points out, 
uk may be very close to one for all values of k > N. This could make the rate of 
convergence of the sequence (4) very slow. In practice, such cases can cause the 
number of iterations required for a given error tolerance, when programming the 
successive approximations, to be large. Keller [3] suggests Newton's method as an 
alternative scheme when tuk is nearly one. The purpose of this paper is to illustrate 
conditions under which the parameter uk in (9) can be replaced by a much smaller 
parameter when the above method is applied to suitable two-point boundary value 
problems. A recent application is also given. 

2. Improved Convergence Rate. We first make the observation that Keller's proof 
and conclusions are unaltered if his condition k2 > N is replaced by the weaker 
condition k2 > 2 N. This is because, in the proof, the bracketed term in the integral 
(7) can then become negative, but will satisfy 0 < 1k2 - af/aul < k2. Thus the step 
leading from (7) to (8) will remain the same. However, with this change in the 
condition on k2, juk can be made smaller than any value of Iuk allowed by k2 > N. 
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This can be done for instance by choosing 

(11) k2= 2N. 

As a matter of fact, this choice gives the smallest value of uk for all k12 > 'N. 
Next, we illustrate a set of conditions which includes the class of functions 

f(x, u), described by Keller's assumption, and which can also distinguish between 
slightly more restrictive subsets of that class. We shall show that one particular 
choice of k, which reduces to (11) when the conditions admit the class of functions 
f in Keller's theorem, will always give a contractive parameter smaller than ftk with 
k > N. 

THEOREM 1. In the boundary value problem (1), let af/au be continuous for all 
x E [0, 1] and all u. Suppose that there exists N > 0 and 8 > 0 such that 0 < 8 < 
af/au < N for all x E [0, 1] and all u. Then a unique solution of (1) exists. For 
k2 = (3 + N), it is given by the limit of the convergent sequence (4).** 

Proof. In terms of definitions (5) and (6), formula (7) again follows. With the 
choice 

(12) k2=(83+N) 
and the bounds on af/au, we have 0 < jk2 - af/auj < '(N - 8). Therefore, from 

(7), 

lem+l(x)l < f1 gk(x, j)!(N - 8) dtjjemjj 2 

cosh k( x 

(13) k(N ) 2 (1 cosh(k/2)) Illi 

N + a cosh(k/2)) IIe 11 m= 1,2. 

Since this relation holds for all x E [0, 1], 

(14) Ilem+ill < ikllemll, m = 1,2, ... 

where 

(15) 1k = N- I - 1 
N + a1 cosh(k/2) j 

Observe that jk < 1, SO that, by the same arguments as those in Keler's theorem, 
the sequence { um(x)} has a limit which is the unique solution of (1). 

Compare the contractive parameter -k of (15) to the contractive parameter Pk of 
(9). Note that, in the case 0 = 8, the condition on af/au is the same as the 
condition in Keller's theorem, but -iik will be defined with k2 = IN and will be 
smaller than any value of jUk defined by k2 > N. If 0 < 8 < N, then the class of 
functions f admitted by Theorem 1 is a particular subset of the class defined in 
Keller's theorem. Also, -tk is defined with k2 = 2(8 + N) and is again smaller than 
any value of pUk with k2 > N. In some cases, 11k may be significantly smaller, and, in 
practice, the iterative procedure used on the sequence { u '(x)) will converge much 
faster. To see this, some specific cases will be shown in Section 3. 

** The condition k2 = '(8 + N) can be replaced by the weaker condition k2 > I(8 
+ N). However, 

the purpose above is to emphasize an optimal choice for convergence speed. 
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Before we illustrate an example application of the above result, an important 
weakening of the assumptions needs to be discussed. Both Keller's theorem and 
Theorem 1 require that f satisfy appropriate conditions for all u. In many cases, 
such as the application in Section 3, f may not satisfy these conditions for all u. 
However, the method can still be applied if certain additional conditions are 
satisfied. For a simple example, consider the following. 

THEOREM 2. Let M > 0 and N > 0. Suppose that af/au is continuous and satisfies 
0 << af/au < Nforallx E [0, l]andallusuch that0 < u(x) < M,0 < ( 1. 
Suppose further that 0 < f(x, u) < 2 (3 + N) * u for all x E [0, 1] and all u such that 
0 < u(x) < M, 0 < x < 1. Then there exists a unique solution of (1) satisfying 
0 < u(x) < M, x E [0, 1]. For k2 = '(8 + N) it is given by the limit of the conver- 
gent sequence of functions (4). 

Proof. It is sufficient to show that each member of the sequence (4) satisfies 
0 < um(x) < M, x E [0, 1]. Then the proof of Theorem 1 is applicable. To this end 
observe that uo- 0 and satisfies 0 < uo < M. Now assume that u r(X) satisfies 
0 < ur(x) < M, 0 < x < 1, for some r > 0. Sincef(x, ur) (N + 3)ur, 0 < k 
-f(x, ur) if k2 > (N + 8). Also, gk(x, () is nonnegative on [0, 1]. Thus the 
integrand in (4b) is nonnegative and 0 < ur+ (x), 0 < x S 1. Since Ur(X) < M, 
f(x, ur) < -(N + 3)M. If k2 = '(N + 8), then, from (4b), 

u r+1l (x) < | k2Mgk(x, () d t 

=k2M I - 
cohk/2 k 2 

M 

for all x E [0, 1]. Thus, by induction, 0 < um(x) S M, m = 0, 1 .... 
As an additional remark, we point out that results similar to the above can be 

stated for two-point problems with Neumann end conditions u'(0) = u'(1) = 0 or 
mixed end conditions u'(0) = u(I) = 0 as well as for cases in which the boundary 
conditions are nonhomogeneous. 

3. Application. The problem of steady-state, isothermal, reaction-diffusion of a 
substance involving nth order kinetics [1] leads to the two-point problem 

(16a) u" 02u n, n > 1, 102 ?-o, 

(16b) u'(0) = 0, u(1) = 1, 

in dimensionless variables. Here 42 is a nonzero constant dependent on geometry, 
concentration, and reaction rate. In [1], an asymptotic analysis is applied to (16). 
The problem is also studied in [2] where a limited approximation is developed as 
well as an iterative numerical procedure which uses the ideas suggested in Section 
2. 

We first make note that the case n = 1 can be solved by elementary methods to 
yield 

(17) u(x) = coshx n1 
We will therefore consider cases n > 2. Also, on physical grounds, solutions for 
n > 1 are expected to satisfy cosh ox/cosh o < u(x) < 1. Solutions which satisfy 
this condition will be sought. 
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Following the approach outlined in the introduction, we consider 

(1 8a) u - k2u = -2u n- k2u, 

(18b) u'(0) = 0, u(l) = 1. 

Then for k # 0, (18) can be converted by the Green's function method to 

(19a) u(x) cosh kx +Jgk(X )[k2u(() - 2[u(()]n ] d 

where 

(19b) gk(XI1 
f sinh k(1 -~cosh kx, 0 (x <~, 

(19b) gk(x,() =k cosh k cosh ksinh k(l -x, ( < x 1. 
For application of the ideas in Section 2, we form the sequence 

(20a) ( ) cosh o 

(20b) U l( ) =coshkx + 9gk(X, )[k2um() -)2[ Um(()]n] d], 

m + 0, 1,. 

Now, in order to show how conditions similar to the conditions in Theorem 2 
can be satisfied, we demonstrate the following. 

(a) For this problem, f(x, u) = o2u ' and 

(21) 0 < no2( h 4 6 af(x, u)/au < no2. 

for all x E [0, 1] and all u such that 1/cosh 4) < u(x) < 1 in [0, 1]. Note that 

no 2(1/cosh o)`f1 plays the role of 8 > 0, and n)2 plays the role of N. 
(b) For all x E [0, 1] and all u such that 1/cosh 4) < u(x) < 1 in [0, 1], 

(22) 0 < o2(1/cosh o)n < f(x, U) < 4)2 

(c) Note the upper bound N and the lower bound 8 for af/au indicated in (a). 
With the choice k2 = '(N + 8), i.e., 

(23) k= 2 (n2 + n p c)2( 1 ) 

each member of the sequence (20) satisfies 1 /cosh 4) < um(x) < 1. In order to 
show this, we can use induction. First, observe that 1/cosh 4) < uo(x) < 1. Next, 
assume that, for some r > 0, Ur(X) satisfies 1/cosh ) < U r(X) < 1 for all x E [0, 1]. 
We then have, from (20b), 

r( ) <cosh kx l gk(xl k 2 
cosh k Jg,(,) 

(24) cosh kx + cosh k- cosh kx 1 
cosh k ' k2cosh k 

With k2 given by (23), we also have 

k2ur(x) - 02[ur(X)]n > k2Ur(X) _ 4)2[Ur(X)]2 

* For the present purpose we could also choose uo(x) = I/cosh o. 
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for all n > 2. Furthermore, 

k2Ur(X) - 4p2[Ur(X)]2 > k2(1/cosh 4) - 42(1/cosh 0)2 

for all x E [0, 1]. To see this consider the parabola s(z) = k2z - 4)2Z2 in the 
interval 1 /cosh 4) < z S 1. The inequality above is true if the minimum value of 
the parabola in the interval 1 /cosh 4) 6 z < 1 occurs at the left-hand end z = 
1 /cosh 4. Note that the zeros are at z = 0 and z = k2/,02, and the maximum 
occurs at z = k2/(202). From (23), k2/42 > 1, n > 2, and therefore k2/(202) > 
1/2. The minimum value is at I/cosh 4 if k2/,02 - 1 > I/cosh 4 or, in other 
words, if 

2 (cosh 4))) cosh 4) 

which can be rearranged as 

n (1 + (1/cosh ))-1) 
2 (1 + (1/cosh 1)) . 

Note that for n = 2 equality holds. Also the left-hand side is always greater than 
n(-)/2 which is greater than or equal to one if n > 4. By applying elementary 
calculus, one can also show that when n = 3 the left-hand side has a minimum in 
the interval 0 < 1 /cosh 4 S 1 which occurs when I/cosh 4) = W - 1. The value 
of that minimum is greater than one. Therefore the minimum value of the parabola 
k2z _ )2Z2 in the interval 1/cosh 4) < z < 1 occurs at z = 1/cosh 4 for n = 

2, 3, ... Finally, if 42 # o and n > 2, then k2 > 42 and 

k2ur(X) _ )2[ur(X))]n > k2( 1/cosh 4) _ 42(1 /cosh 4)2 > 0. 

Thus, from (20b), 

) cosh k + gk(x, ()[k2(1/cosh 4) - 42(1/cosh 0)2)] dt 

cosh kx (k2 _ _ 2 4 Icosh k-cosh kx 
cosh k cosh 4 (cosh 0)2 k2 cosh k J 

(25) cosh kx( 14 + 1 42 ( cosh kx 
cosh k cosh 0 cosh 4 k2(cosh 4)2 cosh k J 

> --+ --I{ -- -- '' 1 
cosh + cosh k cosh) ) k2(cosh 0)2 cosh k 

I 1/cosh 4 

if 

cosh 0-1 4)2 

cosh k-1 k2 cosh4) 

This last inequality inay not be satisfied for all values of 4. We shall restrict the 
problem to values of 4 that satisfy the inequality (26). Then, by induction, each 
member of the sequence (20) satisfies 1/cosh 4 < u'(x) < 1 for all x E [0, 1]. 

The conditions in (a) and (b) above are not exactly the same as those in Theorem 
2. However, when (c) is satisfied, we can use arguments similar to the arguments in 
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the proofs of Theorem 1, Theorem 2, and Keller's theorem to conclude that a 
unique solution of (16) for n > 2 exists, satisfying 1/cosh 4 < u(x) < 1 for all 
x E [0, 1]. It is given by the limit of the sequence (20). In fact, the difference 
em+l(x) for the sequence (20) will have the same form as (7), and, in particular 
with k2 given by (23) and gk(x, () by (19b), 

leM+l(x)I S J gk(x, () [2(n2 - n2l (1/cosh 0)n 1)] dellemjj 

(27) n 42(1 -n(1/cosh4I))-) { 
cosh k - cosh kx 

< iik 11en 1, m = 1,2,.... 

where 
(28) = { 1~~~ - (1/cosh 4)) 1-I 1 

1 + (1/cosh)n-I) coshkj' 

for all x E [0, 1]. 
For comparison, observe that the function f(x, u) for problem (16) will satisfy 

Keller's condition on af/au with N = no 2 for all x E [0, 1], and all u such that 
1/cosh 4 S u(x) < 1 in [0, 1]. Furthermore, if we had used 

(29) k2= n02 

in (c) above (the optimal choice indicated by Keller's conditions) then we would 

have 

(30) le m?(x)l < ,kIlemll, m = 1, 2, ... 

where 

I-k = ( - cosh k) 

for all x E [0, 1]. 
Note the difference in the contractive parameters ik and -k in the following 

table. 
TABLE 1 

42 1k22 
cosh 

n 
Eq. (29) Ik Eq. (23) Ak 

2.25 .42 2 4.50 .76 3.20 .28 
2.25 .42 3 6.75 .85 3.97 .51 
2.25 .42 4 9.00 .90 4.83 .67 
6.25 .16 2 12.50 .94 7.25 .63 
6.25 .16 3 18.75 .97 9.62 .86 
6.25 .16 4 25.00 .99 12.55 .93 

To obtain a numerical solution of the limit of the sequence (20), u(x) can be 
approximated by the discrete solution Uo = u(0), il = u(x1), . .. , ui>_ = u(xj ,), 
ij = u(1) on a uniform grid, h = 1/J, xl = h, x2 = 2h, . . ., xj1 = (J - 1)h, 

xj = 1, where iii is the solution to 

cosh kxi +i 
(31) cosh k+ E ajgk(Xi, Xj) Ik2 -i 4(j~)n] i = 0, 1,. I 
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and a0 = aj = h/2, aj = h, j = 1, . . ., J - 1. Of course, this is an evaluation of 
the integral by the trapezoidal rule. According to Keller [3] this should yield 
accuracy on the order of h2 where h = 1/J. To compute the approximation, a 
sequence of net functions { fim }, m = 0, 1, .... can be defined as 

(32a) u? = cosh 4)xi/cosh 4), i = 0, 1, ... , J, 

jml=cosh kxi + 

(32b) cosh k + ajgk(xi, xj)[k2,im _ 
-p2[mi,]f] 

(32b)~ ~ ~ ~ ~ ~~~~~i0 cosh..,J, 

where a0 = aj = h/2 and aj = h,j = 1, . . . , J - 1. By arguments similar to those 
given by Keller [3], one can show that the limit of the above sequence exists and is 
the unique solution of (31). Also, as J -*oo, the contractive parameter for the 
sequence (32) will converge to ik with k defined by (23) (or 1k with k defined by 

(29)). 
If we assume that J is sufficiently large that the contractive parameter for the 

sequence (32) is approximately the same as the one for (20), then the difference 
between the effects of ik and uk can be seen in the following comparison. Consider 
the case 4)2 = 2.25 and n = 2. If hle'll < 1, then the relation lIem+'ll < (tuk)mIIe'II 

implies that it could take as many as 34 iterations to get the difference in successive 
iterates on the order of 10-4. However, the relation Ile II1 < (iik)mjle1jj implies 
that it would take at most 8 iterations. A more significant difference would be in a 
case where 4)2 = 6.25 and n = 2. In this case, with hle'll < 1, as many as 148 
iterations may be necessary to have lIem+lII < 10-4Ie'lI with k defined by (29). 
With the value of k given by (23), it would only take at most 20. For graphical 
results, see [2]. 

Acknowledgement. The author would like to thank the referee for his criticism 
and suggestions. 

Department of Mathematical Sciences 
Academic Division 
Virginia Commonwealth University 
Richmond, Virginia 23284 

1. R. ARIS, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysis, Vol. I, 
Clarendon Press, Oxford, London, 1975, pp. 101-239. 

2. J. A. DE SIMONE & J. A. Pfmimr-m, "A new asymptotic analysis of the nth order reaction-diffusion 
problem: Analytical and numerical studies," Math. Biosci., v. 40, 1978, pp. 303-318. 

3. H. B KELLER, Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, Waltham, 
Mass., 1968, pp. 106-127. 


